Indian Statistical Institute, Bangalore

B. Math.(Hons.) I Year, First Semester Mid-Sem Examination Analysis -I September 11, 2009 Instructor: Pl.Muthuramalingam

Time: 3 hours

May marks you can get is 30

- 1. If $f, g : [a, b] \longrightarrow R$ are continuous functions then $h = \min \{f, g\}$ is also a continuous function. [2]
- 2. Let $f(x) = a_0 + a_1 x + a_2 x^2 + \cdots$ where $a_0, a_1, a_2 \cdots$ are real nuberes. Let $\{ limsup \ |a_n|^{\frac{1}{n}} \}^{-1} = R_0$
 - (i) Find R_0 when $a_n = \frac{1}{\angle n}$. [1]

(ii) Give example of a_0 , a_1 , $a_2 \cdots$ such that $R_o = 1$, for $|x| = R_0$, the series $\sum a_n x^n$ is divigent for x = 1 and convergent for x = -1. [2]

- 3. Let $I_1 \supset I_2 \supset \cdots$ be a sequence of closed intervals with length $I_r \longrightarrow 0$ as $r \longrightarrow \infty$. If $x_j, \epsilon I_j$ then show that the sequence $\{x_1, x_2, x_3, \cdots\}$ is a cauchy sequence. [2]
- 4. Let x_1, x_2, x_3, \cdots be bounded sequence of reals with $x_j \ge 0$. If every subsequence of x_n has a [further] subsequence converging to 0 show that $x_n \longrightarrow 0$. [3]
- 5. (a) Let $a_n > 0, \sum a_n^2 < \infty, \ \partial > \frac{1}{2}$. Then show that $\sum_{1}^{\infty} \frac{a_n}{n^{\partial}}$ exists. [2]

(b) Let
$$\mathbb{B} > \frac{1}{2}$$
. Show that $\sum b_n < \infty$ where $b_n = \frac{\sqrt{n+1}-\sqrt{n}}{n^{\mathbb{B}}}$. [2]

(c) If
$$|x| < |$$
 show that $x^n \longrightarrow 0$ as $n \longrightarrow \infty$. [1]

6. (a) Show that $f : R \longrightarrow R$ given by $f(x) = x^2$ is not uniformly continuous. [2]

(b) Let f be as in (a). Show that if x_1, x_2, \cdots is a cauchy sequence than $f(x_1), f(x_2), \cdots$ is a cauchy sequence. [2]

(c) Give an example of uniformly continuous functions g_1, g_2 such that the product $g_1 g_2$ is not uniformly continuous and prove your claim.[1]

(d) Let $g: J \longrightarrow R$ be uniformly continuous. Show that if x_1, x_2, \cdots is a cauchy sequence in J, then $g(x_1), \cdots$ is a cauchy sequence. [2]

(e) Let $h : (0,1] \longrightarrow R$ be uniformly continuous. If $y_n \varepsilon(0,1]$ and $y_n \longrightarrow 0$ then $h(y_n)$ is convergent and the limit is independent of the sequence y_1, y_2, \cdots (converging to 0). [3]

(f) Let $k : J \longrightarrow R$ be a continuous, differentiable function and the derivative be bounded and continuous. Show that k is uniformly continuous. Here J is a bounded or unbounded interval. [2]

- 7. If a_1, a_2, \cdots is a sequence of reals with $\sum |a_n| < \infty$, then $\sum a_n$ exists. [2]
- 8. Let a_1, a_2, a_3, \cdots be a sequence of reals. $s_n = a_1 + a_2 + a_3 + a_n$. Assume that the sequence s_{3n} is convergent. Then $\sum a_n$ exists $\Leftrightarrow a_r \longrightarrow 0$ as $r \longrightarrow \infty$. [2]
- 9. Let $a_n > 0$ and $\sum_{1}^{\infty} a_n$ be divergent. Let $b_n = \frac{a_n}{1+a_n}$. Show that $\sum_{1}^{\infty} b_n$ is divergent. [4]
- 10. Let $a_n, b_n > 0$ $a_n \longrightarrow a$ with $a \neq o$. Show that $\limsup (a_n b_n) = a \limsup b_n$. [3]
- 11. Let x_1, x_2, \cdots be a bounded sequence and $\mathbb{B} = \limsup x_n$. If $\varepsilon > 0$, show that $(\mathbb{B} + \varepsilon, \infty)$ can have only finitely many of the x_1, x_2, x_3, \cdots

[3]